Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
PLoS Negl Trop Dis ; 15(8): e0009101, 2021 08.
Article in English | MEDLINE | ID: covidwho-1416858

ABSTRACT

BACKGROUND: In 2005, Bangladesh, India and Nepal agreed to eliminate visceral leishmaniasis (VL) as a public health problem. The approach to this was through improved case detection and treatment, and controlling transmission by the sand fly vector Phlebotomus argentipes, with indoor residual spraying (IRS) of insecticide. Initially, India applied DDT with stirrup pumps for IRS, however, this did not reduce transmission. After 2015 onwards, the pyrethroid alpha-cypermethrin was applied with compression pumps, and entomological surveillance was initiated in 2016. METHODS: Eight sentinel sites were established in the Indian states of Bihar, Jharkhand and West Bengal. IRS coverage was monitored by household survey, quality of insecticide application was measured by HPLC, presence and abundance of the VL vector was monitored by CDC light traps, insecticide resistance was measured with WHO diagnostic assays and case incidence was determined from the VL case register KAMIS. RESULTS: Complete treatment of houses with IRS increased across all sites from 57% in 2016 to 70% of houses in 2019, rising to >80% if partial house IRS coverage is included (except West Bengal). The quality of insecticide application has improved compared to previous studies, average doses of insecticide on filters papers ranged from 1.52 times the target dose of 25mg/m2 alpha-cypermethrin in 2019 to 1.67 times in 2018. Resistance to DDT has continued to increase, but the vector was not resistant to carbamates, organophosphates or pyrethroids. The annual and seasonal abundance of P. argentipes declined between 2016 to 2019 with an overall infection rate of 0.03%. This was associated with a decline in VL incidence for the blocks represented by the sentinel sites from 1.16 per 10,000 population in 2016 to 0.51 per 10,000 in 2019. CONCLUSION: Through effective case detection and management reducing the infection reservoirs for P. argentipes in the human population combined with IRS keeping P. argentipes abundance and infectivity low has reduced VL transmission. This combination of effective case management and vector control has now brought India within reach of the VL elimination targets.


Subject(s)
Insect Control/standards , Insect Vectors/parasitology , Insecticides/administration & dosage , Leishmaniasis, Visceral/prevention & control , Phlebotomus/parasitology , Animals , Biological Assay , Female , Humans , India/epidemiology , Insect Control/methods , Insecticide Resistance , Leishmaniasis, Visceral/epidemiology , Psychodidae/drug effects , Pyrethrins/administration & dosage
2.
Malar J ; 20(1): 233, 2021 May 24.
Article in English | MEDLINE | ID: covidwho-1241104

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has posed a unique challenge to health care systems globally. To curb COVID-19 transmission, mitigation measures such as travel restrictions, border closures, curfews, lockdowns, and social distancing have been implemented. However, these measures may directly and indirectly affect the delivery and utilization of essential health services, including malaria services. The suspension of indoor residual spraying (IRS) and insecticide-treated net (ITN) distribution, shortages of malaria commodities, and reduced demand for health services have hindered the continued delivery of malaria services. The overall goal of this analysis was to describe the trends in malaria incidence and mortality in Zimbabwe prior to and during the pandemic to understand the consequences of COVID-19-related changes in the delivery and utilization of malaria services. METHODS: Monthly data on the number of malaria cases and deaths by district for the period January 2017 to June 2020 were obtained from the national health management information system (HMIS). District-level population data were obtained from the 2012 Census. Malaria incidence per 1000 population and malaria deaths per 100,000 population were calculated for 2017, 2018, 2019, and 2020 and mapped to describe the spatial and temporal variation of malaria at the district level. RESULTS: Compared to the same period in 2017, 2018 and 2019, there was an excess of over 30,000 malaria cases from January to June 2020. The number of malaria deaths recorded in January to June 2020 exceeded the annual totals for 2018 and 2019. District level maps indicated that areas outside high malaria burden provinces experienced higher than expected malaria incidence and mortality, suggesting potential outbreaks. CONCLUSIONS: The observed surge in malaria cases and deaths in January to June 2020 coincided with the onset of COVID-19 in Zimbabwe. While further research is needed to explore possible explanations for the observed trends, prioritizing the continuity of essential malaria services amid the COVID-19 pandemic remains crucial.


Subject(s)
COVID-19/epidemiology , Communicable Disease Control/methods , Malaria/epidemiology , Malaria/mortality , Mosquito Control/methods , COVID-19/mortality , Delivery of Health Care/statistics & numerical data , Female , Humans , Insecticides/administration & dosage , Male , Masks/statistics & numerical data , Physical Distancing , Retrospective Studies , SARS-CoV-2 , Zimbabwe/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL